INVESTIGATE

Invasive Issues

summary

Students research and present findings on invasive species, then research and write about possible solutions.

objectives

- Explain how specific invasive species have impacted the lake food web.
- Suggest possible solutions to problems caused by invasive species in the Great Lakes.

prerequisite

What's New?

vocabulary

Invasive species: plant or animal that enters an ecosystem to which it is not native and competes with one or more native species for food, shelter and/ or reproductive opportunities

Biodiversity: biological variety in an environment as indicated by numbers of different plants and animals

setting

subjects

Language Arts, Ecology

standards

This Great Lakes in My World activity is aligned to the Common Core State Standards and to state learning standards in:

Illinois

Indiana

Michigan

Minnesota

New York

Ohio

Pennsylvania

Wisconsin

This alignment is available on your Great Lakes in My World CD in the "Standards" folder and on-line at http://www.greatlakes.org/ GLiMWstandards.

materials

- Journals
- Pencils
- Poster board
- Markers
- Research materials

background

Please see the background section of the "What's New?" activity. The list of invasive species includes: rusty crayfish, spiny water flea, bighead and silver carp, Eurasian ruffe, sea lamprey, zebra mussel, Eurasian water milfoil and quagga mussel.

.....

procedure

- Introduce the activity by telling the class they're going to build upon what they've learned about invasive species.
 Create a large chart to hang on the wall that duplicates the one on the journal page for this activity. Break students into eight teams to research invasive species. Each team should choose one species.
- Teams research the species to answer the questions in the chart. Students should record the research in their journals, then enter concise responses on the class and journal chart
- 3. Each team should give a five-minute presentation on their findings. Discuss the following questions as a class: What are the most common ways in which these species enter the Great Lakes? Ballast water carried by ships, through canals made by humans. What characteristics are shared by successful invasive species? What can happen when an invasive species successfully establishes itself in an ecosystem?
- 4. Discuss the changes that the lake food web has undergone as a result of the introduction of new species. How long do students think the food web will continue to change? This answer is dependent on predator-prey relationships and on habitat requirements of the invasive and native species and how habitats change with invasive species. Is the food web stable, or in balance right now with the invasive species? No. Will the food web become stable again over time? Possibly- Right now, native organisms spend a lot of energy competing with new organisms for food and space. Over a very long period of time, organisms co-evolve so that they can live in balance and expend less energy competing with each other. In the meantime, the food web as we know it could change drastically and decrease in biodiversity.
- 5. Students work in their groups to draw diagrams of the lake food web that include the invasive species.

wrap-up

- Make clear the difference between the short- and long-term time scales. The imbalance in ecosystems caused by invasive species may be corrected through evolution, but this happens over a very long period of time (thousands of years). In the more immediate future, invasive species may do considerable damage to an ecosystem.
- 2. What is the answer? Do students think that the best solution to this problem is to let the food web take its own course in finding a new balance or to try to control the invasive species? What are the possible ways in which invasives could be controlled? Preventative measures include things such as electric barriers or regulations on shipping ballast water. Measures to reduce existing numbers of invasives in the Great Lakes include selective poisoning, introducing predators and interfering with reproduction.
- 3. Students should go back into their groups to research potential solutions to the damage caused by their species.

- 4. Have students begin research by looking for articles on their species on the following web site: http://www.glerl.noaa.gov/res/Programs/glansis/glansis.html.

 Each group should read at least two articles on their species and one article on another species.
- After reading the articles and doing additional research as necessary, students should brainstorm a list of potential solutions. Have groups each choose one solution from their list on which to expand.
- 6. Students should each write a one-page essay in their journals explaining the impact of the invasive species they have chosen and a possible solution to the problem.
- 7. Student groups should each take five minutes to present their issue and proposed solution to the class.

extension

Turn essays into proposal letters to send to the officials best in a position to affect change. If you choose to do this, it is important to first discuss with students that while they are capable of making change, people are not always successful on their first attempt.

assessment

Rubric on page 87

Name	Latin Name	Origin	When Arrived in Great Lakes	How Arrived in Great Lakes				
alewife	Alosa pseudoharengus	Atlantic coast	Before 1931	Canals and the St. Lawrence River				
bighead and silver carp	Hypophthalmichthys nobilis and Hypophthalmichthys molitrix	Originally from China, now in Mississippi River	Not yet arrived; currently in upper Illinois River less than 55 miles from Lake Michigan; a permanent electric fish barrier is being constructed to prevent their advance towards Lake Michigan	Escaped into the Mississippi River from aquaculture facilities in the early 1990s when the facilities were flooded				
Eurasian ruffe*	Gymnocephalus cernuus	Northern Europe- Black and Caspian Seas	1980s	Arrived in ballast water from a ship				
Eurasian water milfoil	Myriophyllum spicatum	Europe, Asia and North Africa	1940s	Introduced as an aquarium plant				
Hydrilla	Hydrilla verticillata	Africa	1960	Aquarium trade				
purple loosetrife*	Lythrum salicaria	Northern Europe	Early 1900s	Intentionally imported for its beautiful flowers				
quagga mussel	Dreissena bugensis	Eurasia	1989	Arrived in ballast water from a ship				
round goby	Neogobius melanostomus	Black Sea	1986-1988	Arrived in a ship's ballast water brought into St. Clair River or Lake St. Clair				
rusty crayfish	Orconectes rusticus	Ohio River Basin	1960s	Used as bait by fishermen and released by science classes who had them as pets				
sea lamprey	Petromyzon marinus	Atlantic Ocean, St. Lawrence and Hudson Rivers and possibly Lake Ontario	Arrived in 1830s, established by 1938	Through the Welland Canal				
spiny water flea	Bythotrephes cedarstromi	Northern Europe	Lake Huron 1984, in all Great Lakes by 1987	Arrived in ballast water from a ship				
white perch*	Morone americana	Atlantic coast	1930s-1950s	Canals				
zebra mussel	Dreissena polymorpha	Caspian Sea region of Poland, Bulgaria and Russia	About 1985	Arrived in ballast water from a ship				

^{* =} not a Creature Card

Habitat	Food Source	Impact on Food Web	Other Impact	Notes	
Lakes and oceans	Phytoplankton, zooplankton, and small crustaceans	Competes for food	Large numbers die off, can clog water intake pipes and contaminate beaches	Thrived when sea lamprey ate the fish that prey upon it	
Surface layers of open water	Plankton	Would likely compete for food with native fish; are large and consume large quantities of food	Have the potential of destroying the \$1 billion commercial and recreational fishing industry on the Great Lakes	Silver carp species are bothered by boat motor noises and leap several feet out of the water, injuring boaters	
Fresh and brackish waters, usually near river mouths	Highly variable diet including mollusks, insect larvae, small fish, and crustaceans	Aggressive competitor for food	Reproduces quickly; its not eaten because of spiny fins; has a variable diet	Tolerates varying water conditions	
Full sunlight; lives in water to depths of 1- 3m/ 3-9ft	Sunlight	Forms thick mats that choke out native vegetation	Disrupts water recreation	Thrives in warm water and spreads quickly	
Any partially sub- merged body of water with a salinity level of less than 7%	Oxygen and sunlight	Forms tall and thick stalks and shade or choke out all native vegetation	Disrupts water recreation and grows until the surface	Reproduces at an incredibly fast rate	
Moist to wet ground in prairies and streambanks	Sunlight	Destroys habitat for other wetland plants	Its roots choke waterways		
Freshwater lakes up to 33m/98ft	Plankton	Competes for food	See "zebra mussel"	Reproduces quickly; lives at greater depth than zebra mussels	
Lake bottom; found in all Great Lakes and some nearby lakes	Small fish, zebra mussels, fish eggs	Compete with native sculpin for resources; reduces top predators by consuming their eggs		Reproduces quickly; is more likely to find prey than to become prey	
Lakes, ponds, and streams in areas where there is debris on the bottom	Aquatic plants and insects, fish eggs, small fish	Displaces native crayfish; reduce the number and types of aquatic vegetation in invertebrates.			
Freshwater lakes and oceans	Lake trout	Upsets the ecosystem balance by removing top predators	Destroys fish by sucking blood and tissues	Had great impact on the commercial fishing industry of the 1950s	
Throughout Great Lakes and some inland lakes	Plankton	Competes with small fish for food, but its spiny tail prevents it from being eaten			
Marine; spawn in coastal streams; now found in freshwater lakes	Eggs of walleye and white bass	Competes with yellow perch and other fish in shallow water; consumes eggs of other fish	Reduced number of walleye impacted fishing industry		
Freshwater; native to the Caspian and Black Seas; now in all Great Lakes and some inland lakes; depths of 2-7m/ 6-23 ft	Plankton	Competes for food by filtering large amounts of plankton, which has reduced this population	Accumulates on objects, such as boat hulls, and clogs water pipes	Increases water clarity through filter feeding, which increases algae growth and decreases abundance of plankton	

13 | Invasive Issues

GRADE LEVEL 6-8

journal =	- pages
·····	_

													 	 		I
FIRST NAME																
LAST NAME																
[1] Species name:										빝						

[1]	Species	name:
-----	---------	-------

- [2] Species is from:
- [3] When did it arrive in the Great LaKes?
- [4] How was it introduced?
- [5] What is its habitat?
- [6] What is its food source?
- [7] Describe its impact on the food web.
- [8] Draw a diagram of the lake food web including the invasive species. Describe how the native species are impacted by the invasive species.

APPROVED BY

On a separate sheet of paper, write a composition explaining the impact of the invasive species you have chosen, and a possible solution to the problem.

APPROVED BY